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1. Introduction

Anomalous U(1)A gauge symmetry appears often in compactified string theory. The 4-

dimensional (4D) spectrum of such compactification contains a modulus-axion (or dilaton-

axion) superfield which transforms non-linearly under U(1)A to implement the Green-

Schwarz (GS) anomaly cancellation mechanism [1]. In heterotic string theory, the dilaton

plays the role of the GS modulus, however in other string theories, the GS modulus can be

either a Kähler modulus of Calabi-Yau (CY) orientifold [2, 3] or a blowing-up modulus of

orbifold singularity [4]. The non-linear U(1)A transformation of the GS modulus superfield

leads to a field-dependent Fayet-Iliopoulos (FI) term [5] which might play an important role

for supersymmetry (SUSY) breaking. Anomalous U(1)A might also correspond to a flavor

symmetry which generates the hierarchical Yukawa couplings through the Froggatt-Nielsen

mechanism [6, 7].

The U(1)A D-term can give a contribution to soft scalar masses as ∆m2
i = −qig

2
ADA

where qi is the U(1)A charge of the corresponding sfermion [8]. Such D-term contribution

has an important implication to the flavor problem in supersymmetric models. If g2
ADA is

significantly bigger than the gaugino mass-squares M2
a which are presumed to be of order

(1 TeV)2, e.g. g2
ADA ∼ (10 TeV)2, one can avoid the SUSY flavor problem by assuming

that qi are non-vanishing only for the first and second generations of matter fields, which

would make the first and second generations of squarks and sleptons heavy enough to avoid

dangerous flavor-changing-neutral-current (FCNC) processes. Still one can arrange qi to be

appropriately flavor-dependent [9] to generate the observed pattern of hierarchical Yukawa

couplings via the Froggatt-Nielsen mechanism, e.g. yij ∼ εqi+qj for ε ∼ 0.2. In other case

that g2
ADA is comparable to M2

a , one needs qi to be flavor-universal to avoid dangerous

FCNC processes, and then U(1)A can not be identified as a flavor symmetry for the Yukawa
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coupling hierarchy. Finally, if g2
ADA is small enough, e.g. suppressed by a loop factor of

order 10−2 compared to M2
a , qi are again allowed to be flavor-dependent. It has been

noticed that the relative importance of the D-term contribution to soft masses depends on

how the GS modulus is stabilized [10]. In this respect, it is important to analyze the low

energy consequences of anomalous U(1)A while incorporating the stabilization of the GS

modulus explicitly [11 – 13].

In the previous studies of anomalous U(1)A in heterotic string compactification, two

possible scenarios for the stabilization of the GS modulus (the heterotic string dilaton S

in this case) have been considered. One is to use the multiple gaugino condensations [14]

which would stabilize S at the weak coupling regime for which the leading order Kähler

potential is a good approximation. In this race-track stabilization, one typically finds the

auxiliary F component FS = 0 and also DA = 0, although SUSY can be broken by the

F -components of other moduli. The most serious difficulty of the race-track scenario is that

in all known examples the vacuum energy density has a negative value of O(m2
3/2M

2
P l) [15],

where MP l ' 2.4 × 1018 GeV is the 4D reduced Planck mass and m3/2 is the gravitino

mass. Another possible scenario is that S is stabilized by (presently not calculable) large

quantum correction to the Kähler potential [16]. In this case, one can assume that the

dilaton Kähler potential has a right form to stabilize S at a phenomenologically viable

de Sitter (dS) or Minkowski vacuum. The resulting FS and DA are non-vanishing in

general, however the relative importance of DA compared to the other SUSY breaking

auxiliary components depends sensitively on the incalculable large quantum corrections to

the Kähler potential [10].

Recently a new way of stabilizing moduli at dS vacuum within a controllable approxi-

mation scheme has been proposed by Kachru-Kallosh-Linde-Trivedi (KKLT) in the context

of Type IIB flux compactification [17]. The main idea is to stabilize moduli (and also the

dilaton) in the first step at a supersymmetric AdS vacuum for which the leading order

Kähler potential is a good approximation, and then lift the vacuum to a dS state by adding

anti-brane. For instance, in Type IIB compactification, one can first introduce a proper

set of fluxes and gaugino condensations stabilizing all moduli at SUSY AdS vacuum. In

the next step, anti-branes can be added to get the nearly vanishing cosmological constant

under the RR charge cancellation condition. In the presence of fluxes, the compact internal

space is generically warped [18] and anti-branes are stabilized at the maximally warped

position [19]. Then as long as the number of anti-branes is small enough compared to the

flux quanta, anti-branes cause neither a dangerous instability of the underlying compactifi-

cation [19] nor a sizable shift of the moduli vacuum expectation values. In order to get the

nearly vanishing cosmological constant, the anti-brane energy density should be adjusted

to be close to 3m2
3/2M

2
P l. This requires that the warp factor e2A of the 4D metric on anti-

brane should be of O(m3/2/MP l). As it breaks explicitly the N = 1 SUSY preserved by

the background geometry and flux, one might expect that anti-brane will generate incalcu-

lable SUSY breaking terms in the low energy effective lagrangian. However as was noticed

in [20] and will be discussed in more detail in this paper, the SUSY breaking soft terms in

KKLT compactification can be computed within a reliable approximation scheme, which
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is essentially due to that anti-brane is red-shifted by a small warp factor e2A ∼ m3/2/MP l.

In this paper, we wish to examine the implications of anomalous U(1)A for SUSY

breaking while incorporating the stabilization of the GS modulus explicitly. Since one of

our major concerns is the KKLT stabilization of the GS modulus, in section 2 we review the

4D effective action of KKLT compactification and discuss some features such as the D-type

spurion dominance and the sequestering of the SUSY breaking by red-shifted anti-brane

which is a key element of the KKLT compactification. In section 3, we discuss the mass

scales, F and D terms in generic models of anomalous U(1)A. In section 4, we examine in

detail a model for the KKLT stabilization of the GS modulus and the resulting pattern of

soft terms. Section 5 is the conclusion.

The following is a brief summary of our results. The GS modulus-axion superfield T

transforms under U(1)A as

T → T − iα(x)
δGS

2
, (1.1)

where α(x) is the U(1)A transformation function and δGS is a constant of O(1/8π2) when

T is normalized as ∂T fa = O(1) for the holomorphic gauge kinetic functions fa. There are

two mass scales that arise from the non-linear transformation of T :

ξFI =
δGS

2
∂T K0,

M2
GS =

δ2
GS

4
∂T ∂T̄ K0, (1.2)

where ξFI is the FI D-term and M2
GS corresponds to the GS axion contribution to the

U(1)A gauge boson mass-square

M2
A = 2g2

AM2
GS + O(|ξFI |) (1.3)

for the Kähler potential K0 and the U(1)A gauge coupling gA. (Unless specified, we will

use the convention MP l = 1 throughout this paper.) Then the U(1)A D-term is bounded

as

|DA| . O(m2
3/2M

2
P l/M

2
A) (1.4)

for SUSY breaking scenarios with m3/2 ¿ MA.

It has been pointed out [2] that the D-term potential VD = 1
2g2

AD2
A in models with

anomalous U(1)A might play the role of an uplifting potential which compensates the

negative vacuum energy density −3m2
3/2M

2
P l in the supergravity potential. As the Kähler

metric of T typically has a vacuum expectation value of order unity, we have M2
GS ∼

M2
P l/(8π

2)2. Then, since the U(1)A gauge boson mass-square M2
A & O(M2

GS), the above

bound on DA implies that VD is too small to be an uplifting potential in SUSY breaking

scenarios with m3/2 < MP l/(8π
2)2. In other words, models of moduli stabilization in

which VD plays the role of an uplifting potential for dS vacuum generically predict a rather

large m3/2 & O(MP l/(8π
2)2) [13]. On the other hand, in view of that the gaugino masses

receive the anomaly mediated contribution of O(m3/2/8π
2), one needs m3/2 . O(8π2)TeV
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in order to realize the supersymmetric extension of the standard model at the TeV scale. As

a result, models with anomalous U(1)A still need an uplifting mechanism different from the

D-term uplifting, e.g. the anti-brane uplifting of KKLT or a hidden matter superpotential

suggested in [21], if m3/2 is small enough to give the weak scale superparticle masses.

Still DA can give an important contribution to soft masses. As we will see, the relative

importance of this D-term contribution depends on the size of the ratio

R ≡ ξFI/M
2
GS .

If Re(T ) is a string dilaton or a Kähler modulus which is stabilized at a vacuum expectation

value of O(1) under the normalization ∂T fa = O(1), the resulting |R| is of O(8π2). We

then find the D-term contribution to soft masses is generically comparable to the GS

modulus-mediated contribution. In this case of |R| À 1, the longitudinal component of the

U(1)A gauge boson comes mostly from the phase of U(1)A charged field X with a vacuum

expectation value 〈X〉 ∼
√

ξFI , rather than from the GS axion Im(T ). Then T is a flat-

direction of the U(1)A D-term potential, thus one needs a non-trivial F -term potential to

stabilize T . An interesting possibility is the KKLT stabilization of T involving a hidden

gaugino condensation and also anti-brane for the uplifting mechanism. In such case, the

soft terms are determined by three contributions mediated at the scales close to MP l:

the GS modulus mediation [22], the anomaly mediation [23] and the U(1)A mediation [8].

Generically these three contributions are comparable to each other, yielding the mirage

mediation pattern of superparticle masses at low energy scale [20, 24 – 26]. However if the

Kähler potential of X is related to the Kähler potential of T in a specific manner, the

U(1)A mediation is suppressed by a small factor of O(1/8π2) compared to the other two

mediations. Since the anomaly mediation and the GS modulus mediation remain to be

comparable to each other, the mirage mediation pattern is unaltered in this special case

that the U(1)A mediation is relatively suppressed.

In fact, some models of anomalous U(1)A can yield |R| ¿ 1. If T corresponds to a

blowing-up modulus of orbifold singularity stabilized at near the orbifold limit, one can

have |ξFI | ¿ M2
GS [4, 27], and thus |R| ¿ 1. In this limit, soft terms mediated by the GS

modulus at MGS are negligible compared to the soft terms mediated by a U(1)A charged

field X at the lower scale 〈X〉 ∼
√

ξFI . If |R| is small enough, e.g. |R| . 10−4, U(1)A
D-term contribution is also smaller than the low scale mediation at

√
ξFI .

2. 4D effective action of KKLT compactification

In this section, we review the 4D effective action of KKLT compactification and the re-

sulting soft SUSY breaking terms of visible fields. We also discuss some relevant features

of the SUSY breaking by red-shifted anti-brane which is a key element of the KKLT com-

pactification. KKLT compactification can be split into two parts. The first part contains

the bulk of (approximate) CY space as well as the D branes of visible matter and gauge

fields which are assumed to be stabilized at a region where the warping is negligible. Note

that the 4D cutoff scale of this part should be somewhat close to MP l in order to realize

the 4D gauge coupling unification at MGUT ∼ 2 × 1016 GeV. The low energy dynamics of
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this part can be described by a 4D effective action which takes the form of conventional

4D N = 1 SUGRA:

SN=1 =

∫

d4xd2Θ 2E
[

1

8
(D̄2 − 8R)

(

3e−K/3
)

+
1

4
faW

aαW a
α + W

]

+ h.c., (2.1)

where Θα is the Grassmann coordinate of the curved superspace, E is the chiral density,

R is the chiral curvature superfield, and K, fa and W denote the Kähler potential, gauge

kinetic function and superpotential, respectively. In the following, we call this part the

N = 1 sector. The scalar potential of SN=1 in the Einstein frame is given by

VN=1 = eK
{

KIJ̄(DIW )(DJW )∗ − 3|W |2
}

+
1

2Re(fa)
DaDa, (2.2)

where DIW = ∂IW +(∂IK)W is the Kähler covariant derivative of the superpotential and

Da = −ηI
a∂IK for the holomorphic Killing vector ηI

a of the a-th gauge transformation of

ΦI . In KKLT compactification, the N = 1 sector is assumed to have a supersymmetric

AdS vacuum1, i.e.

〈DIW 〉N=1 = 0, 〈VN=1〉 = −3m2
3/2M

2
P l. (2.3)

The remained part of KKLT compactification is anti-brane which is stabilized at the

end of a warped throat. The SUSY preserved by anti-brane does not have any overlap

with the N = 1 SUSY preserved by the background geometry and flux. As a consequence,

the field degrees of freedom on anti-brane do not have N = 1 superpartner in general. For

instance, the Goldstino fermion ξα of the broken N = 1 SUSY which originates from anti-

brane does not have bosonic N = 1 superpartner. This means that the N = 1 local SUSY

is non-linearly realized on the world-volume of anti-brane. Still the anti-brane action can

be written in a locally supersymmetric superspace form using the Goldstino superfield [28]:

Λα = ξα + Θα + · · · , (2.4)

where the ellipsis denotes the ξα-dependent higher order terms. In the unitary gauge of

ξα = 0, the anti-brane action appears to break the N = 1 SUSY explicitly. Generic

explicit SUSY breaking relevant for the soft terms of visible fields is described by three

spurion operators: D-type spurion operator P̃Θ2Θ̄2, F -type non-chiral spurion operator

Γ̃Θ̄2, and F -type chiral spurion operator F̃Θ2. Then the local lagrangian density on the

world volume of anti-brane can be written as

Lanti = δ6(y − ȳ)

∫

d2Θ2 E
[

1

8
(D̄2 − 8R)

(

e4AP̃ Θ2Θ̄2 + e3AΓ̃ Θ̄2
)

− e4AF̃ Θ2 + · · ·
]

+ h.c., (2.5)

where ȳ is the coordinate of the anti-brane in six-dimensional internal space, e2A is the

warp factor on the anti-brane world volume:

ds2(ȳ) = e2Agµνdxµdxν , (2.6)

1Note that Da = −ηI
aDIW/W , so DIW = 0 leads to Da = 0 for W 6= 0.
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and the ellipsis stands for the Goldstino-dependent terms which are not so relevant for us.

Generically P̃ , Γ̃ and F̃ have a value of order unity in the unit with MP l = 1 (or in the

unit with the string scale Mst = 1). The warp factor dependence of each spurion operator

can be easily determined by noting that P̃Θ2Θ̄2 and F̃Θ2 give rise to an anti-brane energy

density which is red-shifted by e4A, while Γ̃Θ̄2 gives rise to a gravitino mass on the anti-

brane world volume which is red-shifted by e3A. (See the discussion of appendix A for

this red-shift of gravitino mass.) Including the Goldstino fermion explicitly, the spurion

operators in Lanti can be written in a locally supersymmetric form, e.g.

P̃Λ2Λ̄2 = P̃Θ2Θ̄2 + · · · ,
Γ̃Λ̄2 = Γ̃Θ̄2 + · · · ,

F̃W̃ αW̃α = F̃Θ2 + · · · , (2.7)

where W̃α = 1
8(D̄2 − 8R)Dα(Λ2Λ̄2) and the ellipses denote the Goldstino-dependent terms.

The SUSY breaking spurions on the world volume of anti-brane can be transmitted

to the visible D-branes by a bulk field propagating through the warped throat. The warp

factor dependence of spurions allows us to estimate the size of SUSY breaking induced by

each spurion without knowing the detailed mechanism of transmission. In addition to giving

a vacuum energy density of O(e4AM4
P l), the D-type spurion P̃Θ2Θ̄2 can generate SUSY

breaking scalar mass-squares of O(e4AM2
P l) through the effective operator e4AP̃Θ2Θ̄2Qi∗Qi

which might be induced by the exchange of bulk fields, where Qi denote the visible matter

superfields. The non-chiral F -type spurion Γ̃Θ̄2 might generate trilinear scalar couplings of

O(e3AMP l) through the effective operator e3AΓ̃Θ̄2Qi∗Qi, while the chiral F -type spurion

F̃Θ2 might generate gaugino masses of O(e4AMP l) through the effective chiral operator

e4AF̃Θ2W aαW a
α . When combined with its complex conjugate or with the F -component

of N = 1 sector moduli, Γ̃Θ̄2 can generate a vacuum energy density of O(e6AM4
P l) or

O(e3Am3/2M
3
P l), and scalar mass-squares of O(e6AM2

P l) or O(e3Am3/2MP l). Similarly,

the chiral F -type spurion F̃Θ2 can generate a vacuum energy density and scalar mass-

squares, but they are suppressed by one more power of eA compared to the contribution

from Γ̃Θ̄2. In case with eA ∼ 1, all spurions give equally important contributions of the

Planck scale size, leading to uncontrollable SUSY breaking. On the other hand, in case

that eA ∼
√

m3/2/MP l, which is in fact required in order for that the anti-brane energy

density cancels the negative vacuum energy density (2.3) of the N = 1 sector, SUSY

breaking terms which originate from the F -type spurions are negligible compared to the

terms which originate from the D-type spurion since they are suppressed by additional

power of eA ∼
√

m3/2/MP l. For instance, in the presence of the D-type spurion providing

a vacuum energy density of O(m2
3/2M

2
P l), there are always the anomaly-mediated soft

masses of O(m3/2/8π
2) which are much bigger than the soft masses induced by the F -type

spurions when eA ¿ 1/8π2. Note that eA ∼
√

m3/2/MP l . 10−6 for m3/2 . O(8π2)TeV

which is necessary to get the weak scale SUSY. Obviously, this feature of D-type spurion

dominance greatly simplifies the SUSY breaking by red-shifted anti-brane.

In addition to the Goldstino fermion, there can be other anti-brane fields, e.g. the anti-

– 6 –



J
H
E
P
0
8
(
2
0
0
6
)
0
0
7

brane position moduli φ̃.2 The anti-brane moduli also do not have N = 1 superpartner,

however one can construct the corresponding Goldstino-dependent superfields as

Φ̃ = φ̃ + i(Θσµξ̄ − ξσµΘ̄)∂µφ̃ + · · · (2.8)

The anti-brane lagrangian density including Φ̃ and also the bulk moduli Φ which can have

a local interaction on the world volume of anti-brane can be written as

Lanti = δ6(y − ȳ)

∫

d2Θ 2e3AE
[

1

8
e−A

(

D̄2 − 8R
)

Ωanti(ZA, Z∗
A)

]

+ h.c., (2.9)

where Ωanti is a function of ZA =
{

eA/2Λα, e−A/2Dα, e−AR, Φ̃,Φ
}

. Here the warp factor

dependence of Lanti is determined by the Weyl weights of the involved superfields. Taking

into account that the F -type spurions can be ignored in case of eA ∼
√

m3/2/MP l, Ωanti

can be approximated as

Ωanti ' e2AΛ2Λ̄2

[

P̃(Φ,Φ∗) +
1

16
e−2AZΦ̃(Φ,Φ∗)Φ̃∗D̄2D2Φ̃ + M2

Φ̃
(Φ,Φ∗)Φ̃∗Φ̃

]

, (2.10)

where ZΦ̃ = O(1), MΦ̃ = O(MP l), and 〈Φ̃〉 is chosen to be zero. This shows that the anti-

brane moduli masses are generically of O(
√

m3/2MP l). Since it is confined on the world

volume of anti-brane, Φ̃ can not be a messenger of SUSY breaking, so can be integrated

out without affecting the local SUSY breaking in the visible sector. Then, after integrating

out the KK modes of bulk fields as well as the anti-brane moduli Φ̃, the 4D effective action

induced by Ωanti takes the form:

S
(4D)
anti =

1

8

∫

d4xd2Θ 2E (D̄2 − 8R)
(

P̃(Φ,Φ∗) + Ỹi(Φ,Φ∗)Qi∗Qi
)

e4AΛ2Λ̄2 + h.c.(2.11)

Note that the contact interaction between e4AΛ2Λ̄2 and Qi∗Qi was not allowed in Ωanti

because Λα and the visible matter superfields Qi live on different branes which are geo-

metrically separated from each other. Thus, if Ỹi 6= 0, it should be a consequence of the

exchange of bulk fields which couple to both e4AΛ2Λ̄2 (on anti-brane) and Qi∗Qi (on the

D-branes of visible fields).

Possible phenomenological consequences of S
(4D)
anti are rather obvious. The Goldstino

operator e4AP̃Λ2Λ̄2 gives rise to an uplifting potential of O(m2
3/2M

2
P l) which would make

the total vacuum energy density to be nearly vanishing. In the following, we will call

this Goldstino operator the uplifting operator.3 The uplifting potential induces also a

SUSY-breaking shift of the vacuum configuration (2.3), which would result in nonzero

vacuum values of F I and Da. The effective contact interaction between Qi and Λα gives

soft SUSY-breaking sfermion mass-squares of O(Ỹim
2
3/2). Note that the features of the

4D effective action of anti-brane which have been discussed so far rely only on that anti-

brane is red-shifted by the warp factor eA ∼
√

m3/2/MP l, thus are valid for generic KKLT

compactification.

2There can be also anti-brane gauge field Ãµ. However Ãµ is not relevant for the transmission of SUSY

breaking to the visible sector, thus will be ignored.
3In fact, this corresponds to the superspace expression of the Volkov-Akulov Goldstino lagrangian density.

– 7 –



J
H
E
P
0
8
(
2
0
0
6
)
0
0
7

Since the scalar masses from the the effective contact term e4AΛ2Λ̄2Qi∗Qi in S
(4D)
anti can

be phenomenologically important, let us consider in what situation this contact interaction

can be generated. The warped throat in KKLT compactification has approximately the

geometry of T5 × AdS5 where T5 is a compact 5-manifold which is topologically S2 × S3.

In the limit that the radius of T5 is small compared to the length of the warped throat, the

transmission of SUSY breaking through the throat can be described by a supersymmetric

5D Randall-Sundrum (RS) model [29] with visible D-branes at the UV fixed point (y = 0)

and anti-brane at the IR fixed point (y = π) [34]. Let us thus examine the possible

generation of the effective contact term within the framework of the supersymmetric 5D

RS model.

It has been noticed that the 5D bulk SUGRA multiplet does not generate a contact

interaction between UV superfield and IR superfield at tree level [30].4 Loops of 5D SUGRA

fields generate such contact interaction, however the resulting coefficient Ỹi is suppressed

by the warp factor e2A [32], so is negligible.5 In fact, in order to generate the contact

interaction e4AΛ2Λ̄2Qi∗Qi in 4D effective action, one needs a bulk field B other than

the 5D SUGRA multiplet which has a non-derivative coupling in N = 1 superspace to

both e4AΛ2Λ̄2 at the IR fixed point and Qi∗Qi at the UV fixed point. Since the SUGRA

multiplet is not crucial for the following discussion, we will use the rigid N = 1 superspace

for simplicity, and then the required fixed point couplings of B can be written as

∫

d2θd2θ̄
[

δ(y)gBBQi∗Qi + δ(y − π)g′Be4ABΛ2Λ̄2 + h.c.
]

, (2.12)

where θα is the Grassmann coordinate of the rigid N = 1 superspace. If B is a chiral su-

perfield in N = 1 superspace, the effective contact interaction between Qi∗Qi and e4AΛ2Λ̄2

induced by the exchange of B is suppressed by the superspace derivative D̄2. This can

be easily noticed from the fact that the effective contact interaction arises from the part

of the solution of B which is proportional to the UV brane source Qi∗Qi or the IR brane

source e4AΛ2Λ̄2. Since the brane sources are non-chiral, this part of the solution should

include the chiral projection operator D̄2. As a result, the coefficient of the induced contact

interaction is given by Ỹi ∼ gBg′BD̄2/k where k is the AdS curvature which is essentially

of O(MP l). Since D̄2/k leads to an additional suppression by m3/2/MP l, the contact in-

teraction induced by chiral bulk superfield gives at most a contribution of O(m3
3/2/MP l)

to the soft scalar mass-squares of Qi when eA ∼
√

m3/2/MP l, which is totally negligible.

On the other hand, if B is a vector superfield in N = 1 superspace, there is no such

suppression by the chiral projection operator, so the resulting Ỹi can be sizable in certain

cases. To examine the contact term induced by a bulk vector superfield in more detail, one

4In CFT interpretation, this might correspond to the conformal sequestering discussed in [31].
5Note the difference of the SUSY-breaking IR brane operator between our case and [32]. In our case, the

SUSY breaking IR brane operator is given by e4AΛ2Λ̄2 for the Goldstino superfield Λα normalized as (2.4),

while the SUSY breaking IR brane operator of [32] is e2AZ∗Z for a N = 1 chiral IR brane superfield Z

with nonzero F Z .
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can consider the 5D lagrangian of B which contains
∫

d2θd2θ̄
[ 1

8
BDαD̄2DαB + M2

Be−2kLyB2

+ δ(y)gBBQi∗Qi + δ(y − π)g′Be−4kLyBΛ2Λ̄2
]

, (2.13)

where e−kLy is the position dependent warp factor in AdS5, L is the orbifold length, and

MB is the 5D mass of the vector superfield B. (e−πkL = eA in this convention.) The warp

factor dependence of each term in the above 5D lagrangian can be determined by looking at

the dependence on the background spacetime metric. Note that the UV brane coupling gB

(the IR brane coupling g′B) corresponds to the gauge coupling between the 4D vector field

component of B and the 4D current component of the UV brane operator Qi∗Qi (the IR

brane operator Λ2Λ̄2). The 5D locality and dimensional analysis suggest that the contact

term obtained by integrating out B has a coefficient Ỹi ∝ e−πMBL in the limit MB À k.

Indeed, for MB & k, a more careful analysis [33] gives

Ỹi ∼ gBg′Be−π(
√

M2

B+k2−k)L/M2
B . (2.14)

This result indicates that a sizable contact term can be induced if the model contains

a vector superfield B propagating through the warped throat with bulk mass MB . k

and also sizable gB and g′B . In KKLT compactification of Type IIB string theory, one

does not have such bulk vector superfield, thus it is expected that Ỹi is negligibly small,

i.e. anti-brane is sequestered well from the D-branes of visible fields. In fact, in KKLT

compactification of Type IIB string theory, one finds that P̃ is independent of the CY

volume modulus [20], thus even the CY volume modulus is sequestered from anti-brane.

This is not suprising in view of that the wavefunction of the volume modulus has a negligible

value over the throat, thus the volume modulus can be identified as a UV brane field in

the corresponding RS picture [34]. In the following, we will assume that Qi and Λα are

sequestered from each other, thus

Ỹi = 0. (2.15)

We stress that this sequestering assumption is relevant only for the soft scalar masses. The

other SUSY breaking observables such as the gaugino masses and trilinear scalar couplings

are not affected even when Ỹi has a sizable value.

According to the above discussion, the 4D effective action of anti-brane is highly dom-

inated by the uplifting operator:

S
(4D)
anti ' 1

8

∫

d4xd2Θ 2E (D̄2 − 8R)
(

e4AP̃(Φ,Φ∗)Λ2Λ̄2
)

+ h.c., (2.16)

and then the total 4D effective action of KKLT compactification is given by

SKKLT = SN=1 + S
(4D)
anti

=

∫

d4xd2Θ 2E
[

1

8
(D̄2 − 8R)

(

3e−K/3 + PΛ2Λ̄2
)

+
1

4
faW

aαW a
α + W

]

+ h.c., (2.17)
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where

P(Φ,Φ∗) = e4AP̃(Φ,Φ∗) = O(m2
3/2M

2
P l). (2.18)

Since the vacuum expectation value of P can be fixed by the condition of vanishing cos-

mological constant, the above 4D effective action is almost equally predictive as the con-

ventional N = 1 SUGRA without the anti-brane term PΛ2Λ̄2. This nice feature of KKLT

compactification is essentially due to that anti-brane is highly red-shifted.

In fact, for the discussion of moduli stabilization at a nearly flat dS vacuum and

the subsequent SUSY breaking in the visible sector, the SUGRA multiplet can be simply

replaced by their vacuum expectation values, e.g. gµν = ηµν and ψµ = 0, except for its

scalar auxiliary component M whose vacuum expectation value should be determined by

minimizing the scalar potential. The most convenient formulation for the SUSY breaking

by M is to introduce the chiral compensator superfield C, then choose the superconformal

gauge M = 0 to trade M for FC , and finally replace the SUGRA multiplet by their vacuum

values, while making the superconformal gauge choice in the rigid superspace:

C = C0 + θ2FC . (2.19)

In the unitary gauge, this procedure corresponds to the following replacements for the

superspace action:

Λα → C∗

C1/2
θα,

W aα → C−3/2W aα,

d2Θ2E → d2θC3,

−1

4
d2Θ2E(D̄2 − 8R) → d2θd2θ̄CC∗, (2.20)

under which the locally supersymmetric action (2.17) is changed to

SKKLT =

∫

d4x

[
∫

d2θd2θ̄ CC∗
(

−3e−K/3 − CC∗Pθ2θ̄2
)

+

(∫

d2θ

(

1

4
faW

aαW a
α + C3W

)

+ h.c.

)]

. (2.21)

Although written in the rigid superspace, the action (2.21) includes all SUGRA effects

on SUSY breaking. Also as it has been derived from locally supersymmetric action without

any inconsistent truncation, it provides a fully consistent low energy description of KKLT

compactification which contains a red-shifted anti-brane. It is obvious that the uplifting

anti-brane operator Pθ2θ̄2 does not modify the solutions for the auxiliary components of

N = 1 superfields, thus

FC

C0
=

1

3
F I∂IK +

C∗2
0

C0
eK/3W ∗ =

1

3
F I∂IK + m∗

3/2,

F I = −C∗2
0

C0
eK/3KIJ̄(DJW )∗ = −eK/2KIJ̄(DJW )∗,

Da = −C0C
∗
0e−K/3ηI

a∂IK = −ηI
a∂IK, (2.22)
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where m3/2 = eK/2W and we have chosen the Einstein frame condition C0 = eK/6 for the

last expressions. Here the index I stands for generic chiral superfield ΦI , and ηI
a is the

holomorphic Killing vector for the infinitesimal gauge transformation:

δaΦ
I = iαa(x)ηI

a. (2.23)

Although it does not modify the on-shell expression of the auxiliary components of the

N = 1 superfields, the uplifting operator provides an additional scalar potential Vlift which

plays the role of an uplifting potential in KKLT compactification:

VTOT = VF + VD + Vlift, (2.24)

where

VF = (C0C
∗
0 )2 eK/3

{

KIJ̄(DIW )(DJW )∗ − 3|W |2
}

= eK
{

KIJ̄(DIW )(DJW )∗ − 3|W |2
}

,

VD =
1

2Re(fa)
DaDa,

Vlift = (C0C
∗
0 )2 P = e2K/3P, (2.25)

where again the last expressions correspond to the results in the Einstein frame with

C0 = eK/6.

Let us now consider the KKLT stabilization of CY moduli Φ and the resulting soft

SUSY breaking terms of visible fields using the 4D effective action (2.17) or equiva-

lently (2.21). In the first stage, Φ is stabilized at the SUSY AdS minimum Φ0 of VN=1 =

VF + VD for which

DIW (Φ0) = 0, W (Φ0) 6= 0. (2.26)

The moduli masses at this SUSY AdS vacuum are dominated by the supersymmetric

contribution which is presumed to be significantly larger than the gravitino mass:

|mΦ| À |m3/2|, (2.27)

where

mΦ ' −
(

eK/2∂2
ΦW

∂Φ∂Φ̄K

)

Φ0

. (2.28)

Adding the uplifting potential will shift the moduli vacuum values while making the total

vacuum energy density to be nearly zero. Expanding the effective lagrangian of Φ around

Φ0, one finds

LΦ = ∂Φ∂Φ̄K(Φ0)
(

|∂µ∆Φ|2 − |mΦ|2|∆Φ|2
)

+ 3|m3/2|2M2
P l

−Vlift(Φ0) −
(

∆Φ∂ΦVlift(Φ0) + h.c
)

+ · · · , (2.29)
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where ∆Φ = Φ − Φ0. Then the moduli vacuum shift is determined to be

∆Φ

Φ0
' − Φ∗

0∂Φ̄Vlift(Φ0)

|Φ0|2∂Φ∂Φ̄K(Φ0)|mΦ|2
= O

(

m2
3/2

m2
Φ

)

(2.30)

for |Φ0|2∂Φ∂Φ̄K(Φ0) = O(1) and Φ0∂ΦVlift(Φ0) = O(Vlift(Φ0)) = O(m2
3/2M

2
P l). This vac-

uum shift induces a nonzero FΦ as

FΦ

Φ
' ∆Φ∂ΦFΦ + ∆Φ∗∂Φ̄FΦ

Φ

' −eK/2(∂2
ΦW )∗

∂Φ∂Φ̄K

∆Φ∗

Φ

' −
(

3Φ∗∂Φ ln(Vlift)

|Φ|2∂Φ∂Φ̄K

) |m3/2|2
mΦ

= O
(

m2
3/2

mΦ

)

, (2.31)

where we have used Vlift(Φ0) ' 3|m3/2|2M2
P l. The above result implies that heavy CY

moduli with mΦ À 8π2m3/2 are not relevant for the low energy SUSY breaking since the

corresponding FΦ/Φ is negligible even compared to the anomaly mediated soft masses of

O(m3/2/8π
2).

In KKLT compactification, all complex structure moduli (and the Type IIB dilaton

also) are assumed to get a heavy mass of O(M3
KK/M2

st) which is much heavier than 8π2m3/2

for m3/2 . O(8π2)TeV. (Here MKK and Mst are the CY compactification scale and the

string scale, respectively.) This means that complex structure moduli (and the Type IIB

dilaton) are not relevant for the low energy soft terms, thus can be safely integrated out.

On the other hand, the Kähler moduli masses from hidden gaugino condensations are given

by mΦ ∼ m3/2 ln(M2
P l/m

2
3/2), and thus FΦ/Φ ∼ m3/2/8π

2. As a result, the Kähler moduli

can be an important messenger of SUSY breaking and generically their contributions to

soft terms are comparable to the anomaly mediation [20].

The eqs. (2.30) and (2.31) show that one needs to know how the uplifting operator P
depends on Φ in order to determine FΦ/Φ. The above discussion implies also that only the

dependence of P on the relatively light moduli with mΦ . O(8π2m3/2) is relevant for the

low energy SUSY breaking. In KKLT compactification of Type IIB string theory, anti-brane

is stabilized at the end of a nearly collapsing 3-cycle. On the other hand, the messenger

Kähler moduli correspond to the 4-cycle volumes, thus their wavefunctions have a negligible

value at the end of the collapsing 3-cycle. This implies that Kähler moduli Φ are sequestered

from anti-brane, i.e. ∂Φ lnP ' 0. Indeed, in this case, one finds K = −3 ln(T + T ∗) and

Vlift ∝ 1/(T +T ∗)2 for the CY volume modulus T , for which P = e−2K/3Vlift is independent

of T . On the other hand, in the absence of warped throat, one finds Vlift ∝ 1/(T + T ∗)3

and thus P ∝ 1/(T + T ∗), showing that T has a contact interaction with anti-brane. This

indicates that the presence of warped throat is crucial for the sequestering as well as for the

necessary red-shift of anti-brane. In this paper, although we are mainly interested in the

sequestered anti-brane, we will leave it open possibility that P depends on some messenger

moduli.

– 12 –



J
H
E
P
0
8
(
2
0
0
6
)
0
0
7

To derive the expression of the soft SUSY breaking terms of visible fields, let us expand

K and W in powers of the visible chiral matter fields Qi:

K = K0(Φ
x,Φx∗, V ) + Zi(Φ

x,Φx∗, V )Qi∗e2qiV Qi,

W = W0(Φ
x) +

1

6
λ̃ijk(Φ

x)QiQjQk, (2.32)

where Φx stand for generic messenger superfields of SUSY breaking, and V is the vector

superfield for gauge field. The soft SUSY breaking terms of canonically normalized visible

fields can be written as

Lsoft = −1

2
Maλ

aλa − 1

2
m2

i |Q̃i|2 − 1

6
AijkyijkQ̃

iQ̃jQ̃k + h.c., (2.33)

where λa are gauginos, Q̃i is the scalar component of the superfield Qi, and yijk are the

canonically normalized Yukawa couplings:

yijk =
λ̃ijk

√

e−K0ZiZjZk

. (2.34)

Then from the superspace action (2.21), one finds that the soft masses renormalized at just

below the GUT threshold scale MGUT are given by6

Ma = F x∂x ln (Re(fa)) +
bag

2
a

8π2

FC

C0
,

Aijk = −F x∂x ln

(

λ̃ijk

e−K0ZiZjZk

)

− 1

16π2
(γi + γj + γk)

FC

C0
,

m2
i =

2

3
〈VF + Vlift〉 − F xF x∗∂x∂x̄ ln

(

e−K0/3Zi

)

−
(

qi + ηx∂x ln(Zi)
)

g2〈D〉

− 1

32π2

dγi

d ln µ

∣

∣

∣

∣

FC

C0

∣

∣

∣

∣

2

+
1

16π2

{

(∂xγi)F
x

(

FC

C0

)∗

+ h.c.

}

=
2

3
〈Vlift〉 +

(

〈VF 〉 + m2
3/2 − F xF x∗∂x∂x̄ ln (Zi)

)

−
(

qi + ηx∂x ln(Zi)
)

g2〈D〉

− 1

32π2

dγi

d ln µ

∣

∣

∣

∣

FC

C0

∣

∣

∣

∣

2

+
1

16π2

{

(∂xγi)F
x

(

FC

C0

)∗

+ h.c.

}

, (2.35)

where ∂x = ∂/∂Φx and F x is the F -component of Φx which can be determined by (2.30)

and (2.31) in KKLT moduli stabilization scenario. Here we have included the anomaly

mediated contributions, i.e. the parts involving FC , and the D-term contribution (for U(1)

gauge group under which δΦx = iα ηx) as well as the contributions from F x. As we will

see in the next sections, all these three contributions can be comparable to each other in

6Note that these soft terms are the consequence of either a non-renormalizable interaction suppressed

by 1/MPl or an exchange of messenger field with a mass close to MPl. As a result, the messenger scale of

these soft terms is close to MPl although the cutoff scale of the dynamical origin of SUSY breaking, i.e. the

anti-brane, is eAMPl ∼
p

m3/2MPl which is far below MPl.
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models with anomalous U(1)A, thus should be kept altogether. Here ba and γi are the one-

loop beta function coefficients and the anomalous dimension of Qi, respectively, defined

by

dga

d ln µ
=

ba

8π2
g3
a,

d ln Zi

d ln µ
=

1

8π2
γi.

More explicitly,

ba = −3

2
tr

(

T 2
a (Adj)

)

+
1

2

∑

i

tr
(

T 2
a (Qi)

)

,

γi = 2C2(Q
i) − 1

2

∑

jk

|yijk|2 (
∑

a

g2
aT

2
a (Qi) ≡ C2(Q

i)1 ),

∂xγi = −1

2

∑

jk

|yijk|2∂x ln

(

λ̃ijk

e−K0ZiZjZk

)

− 2C2(Q
i)∂x ln (Re(fa)) , (2.36)

where ωij =
∑

kl yikly
∗
jkl is assumed to be diagonal. Note that soft scalar masses depend on

〈Vlift〉, 〈VF 〉 and 〈D〉. Since any of 〈VF 〉, 〈Vlift〉 and 〈D〉 can give an important contribution

to m2
i under the condition of vanishing cosmological constant:

〈VTOT〉 = 〈VF 〉 + 〈Vlift〉 + 〈VD〉 = 0, (2.37)

all of these contributions should be included with correct coefficients.

3. Mass scales, F and D terms in 4D SUGRA with anomalous U(1)

In this section, we discuss the mass scales and SUSY breaking F and D terms in 4D

effective SUGRA which has an anomalous U(1)A gauge symmetry. To apply our results

to the KKLT stabilization of the GS modulus, we will include the uplifting Goldstino

superfield operator PΛ2Λ̄2 which was discussed in the previous section. The results for the

conventional 4D SUGRA can be obtained by simply taking the limit P = 0.

In addition to the visible matter superfields {Qi}, the model contains the MSSM

singlet superfields {Φx} = {T,Xp } which can participate in SUSY breaking and/or U(1)A
breaking, where T is the GS modulus-axion superfield. These chiral superfields transform

under U(1)A as

U(1)A : δAT = −iα(x)
δGS

2
, δAXp = iα(x)qpX

p, δAQi = iα(x)qiQ
i, (3.1)

where α(x) is the infinitesimal U(1)A transformation function, and δGS is a constant. We

will choose the normalization of T for which the holomorphic gauge kinetic functions are

given by

fa = kaT + T -independent part, (3.2)

where ka are real (quantized) constants of order unity. Under this normalization, we need

|〈T 〉| . O(1) to get the gauge coupling constants of order unity, and also the cancellation
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of anomalies by the U(1)A variation of kaIm(T )F aµν F̃ a
µν requires

δGS = O
(

1

8π2

)

. (3.3)

Models with anomalous U(1)A gauge symmetry contain also an approximate global U(1)

symmetry:

U(1)T : δT T = iβ, δT Xp = δT Qi = 0, (3.4)

where β is an infinitesimal constant. Obviously U(1)T is explicitly broken by δT fa = ikaβ

as well as by non-perturbative effects depending on e−cT with an appropriate constant c.

In some cases, it is more convenient to consider the following approximate global symmetry

U(1)X : δXT = 0, δXXp = iβqpX
p, δXQi = iβqiQ

i (3.5)

which is a combination of U(1)A and U(1)T . The fact that quantum amplitudes are free

from U(1)A anomaly requires

(δXfa)1−loop = iβka
δGS

2
, (3.6)

where δXfa represent the U(1)X anomalies due to the fermion loops.

For generic 4D SUGRA action (2.17) including the Goldstino superfield operator

PΛ2Λ̄2, one can find the following relation between the vacuum expectation values of

SUSY breaking quantities:

(

VF +
2

3
Vlift + 2|m3/2|2 +

1

2
M2

A

)

DA

= −F IF J∗∂I(η
L∂L∂J̄K) + VDηI∂I ln g2

A + Vliftη
I∂I lnP, (3.7)

where gA, DA, MA and ηI denote the gauge coupling, D-term, gauge boson mass, and

holomorphic Killing vector of U(1)A, respectively:

DA = −ηI∂IK, M2
A = 2g2

AηIηJ∗∂I∂J̄K (3.8)

for the U(1)A transformation δAΦI = iα(x)ηI . Here VF , VD and Vlift are the F -term

potential, the D-term potential and the uplifting potential, respectively:

VF = KIJ̄F IF J∗ − 3|m3/2|2,

VD =
1

2
g2
AD2

A, Vlift = e2K/3P, (3.9)

and all quantities are evaluated for the vacuum configuration satisfying

∂IVTOT = ∂I(VF + VD + Vlift) = 0. (3.10)

The relation (3.7) has been derived before [35] for the conventional 4D SUGRA without

Vlift. Since it plays an important role for our subsequent discussion, let us briefly sketch the
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derivation of (3.7) for SUGRA including the uplifting operator PΛ2Λ̄2. From the U(1)A
invariances of K and W , one easily finds

ηI∂IK = ηI∗∂ĪK, ηIDIW = −WDA (3.11)

which lead to

ηI∂IDA = −ηIηJ∗∂I∂J̄K = −M2
A

2g2
A

,

(∂LηI)DIW + ηI∂I(DLW ) = WηĪ∂Ī∂LK. (3.12)

Using these relations, one can find

ηI∂IVD = VDηI∂I ln(g2
A) − 1

2
M2

ADA,

ηI∂IVF = −(VF + 2|m3/2|2)DA − F IF J∗∂I(η
L∂L∂J̄K),

ηI∂IVlift =

(

−2

3
DA + ηI∂I ln(P)

)

Vlift. (3.13)

Applying the stationary condition (3.10) to (3.13), one finally obtains the relation (3.7).

For the analysis of SUSY and U(1)A breaking, we can simply set Qi = 0. Also for

simplicity, we assume that all moduli other than T can be integrated out without affecting

the SUSY and U(1)A breaking. Then Xp correspond to the U(1)A charged but MSSM

singlet chiral superfields with vacuum expectation values which are small enough to allow

the expansion in powers of Xp/MP l, but still large enough to play an important role in

SUSY and/or U(1)A breaking. To be concrete, we will use the Kähler potential which takes

the form:

K = K0(Φ
x,Φx∗, VA) + Zi(tV )Qi∗e2qiVAQi

= K0(tV ) + Zp(tV )Xp∗e2qpVAXp + Zi(tV )Qi∗e2qiVAQi, (3.14)

where tV = T + T ∗ − δGSVA for the U(1)A vector superfield VA, however our results will

be valid for more general K including the terms higher order in Xp/MP l. For the above

Kähler potential, the U(1)A D-term and gauge boson mass-square are given by

DA = ξFI − qpZ̃p|Xp|2,
M2

A

2g2
A

= M2
GS +

(

q2
pZ̃p −

δGS

2
qp∂T Z̃p

)

|Xp|2, (3.15)

where ξFI and M2
GS are the FI D-term and the GS axion contribution to M2

A, respectively:

ξFI =
δGS

2
∂T K0,

M2
GS =

δ2
GS

4
∂T ∂T̄ K0, (3.16)

and

qpZ̃p = qpZp −
δGS

2
∂T Zp. (3.17)
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If |〈T 〉| . O(1) as required for the gauge coupling constants to be of order unity, the Kähler

metric of T is generically of order unity, and then

MGS ∼ δGSMP l ∼
MP l

8π2
. (3.18)

On the other hand, the size of ξFI depends on the more detailed property of T . If

Re(T ) is a dilaton or a Kähler modulus stabilized at 〈Re(T )〉 = O(1), we have |ξGS| '
M2

GS(T +T ∗)/|δGS | ∼ 8π2M2
GS . In another case that T is a blowing-up modulus of orbifold

singularity stabilized at near the orbifold limit, the resulting |ξFI | ¿ M2
GS .

In view of that the gaugino masses receive the anomaly mediated contribution of

O(m3/2/8π
2), one needs m3/2 hierarchically lower than MP l, e.g. m3/2 . O(8π2) TeV, in

order to realize the supersymmetric extension of the standard model at the TeV scale.

Since the U(1)A gauge boson mass is always rather close to MP l:

MA &
√

2gAMGS ∼ MP l

8π2
, (3.19)

let us focus on models with

m3/2 ¿ MA, 〈VTOT〉 ' 0, (3.20)

and examine the mass scales in such models. The condition of nearly vanishing cosmological

constant requires that

KIJ̄F IF J∗ . O(m2
3/2M

2
P l), Vlift . O(m2

3/2M
2
P l), (3.21)

and then the relation (3.7) implies

|DA| . O
(

m2
3/2M

2
P l

M2
A

)

. O((8π2)2m2
3/2). (3.22)

It has been pointed out that one might not need to introduce anti-brane to obtain a

dS vacuum if the D-term potential VD = 1
2g2

AD2
A can compensate the negative vacuum

energy density −3m2
3/2M

2
P l in VF [2]. The second relation of (3.11) indicates that F I 6= 0

is required for DA 6= 0, thus the D-term uplifting scenario can not be realized for the

supersymmetric AdS solution of VF . However for a SUSY-breaking solution with F I 6= 0,

VD might play the role of an uplifting potential making 〈VF + VD〉 ≥ 0. The above bound

on DA imposes a severe limitation on such possibility as it implies that VD can not be

an uplifting potential in SUSY breaking scenarios with m3/2 ¿ M2
A/MP l. In other words,

SUSY breaking models in which VD plays the role of an uplifting potential generically

predict a rather large m3/2 & O(M2
A/MP l) & O(MP l/(8π

2)2). For instance, the model

of [13] in which VD indeed compensates −3m2
3/2M

2
P l in VF gives MA = O(MP l/

√
8π2) and

m3/2 = O(MP l/8π
2).

Let us now examine more detailed relations between the F and D terms for the Kähler

potential (3.14). In case that 〈Re(T )〉 = O(1), the FI D-term is rather close to M2
P l:
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ξFI = O(M2
P l/8π

2). Such a large value of ξFI in DA should be cancelled by qpZ̃p|Xp|2 in

order to give DA satisfying the bound (3.22), thus

ξFI ' qpZ̃p|Xp|2. (3.23)

In some case, for instance the case that the GS modulus is a blowing-up mode of orbifold

singularity, ξFI can have a vacuum value smaller than M2
P l by many orders of magnitude.

However the existence of the anomalous (approximate) global symmetry U(1)X implies that

some Xp should get a large vacuum value |Xp|2 À |DA| to break U(1)X at a sufficiently

high energy scale. This means that |ξFI | À |DA| and the relation (3.23) remains to be

valid even in case that |ξFI | is smaller than M2
P l by many orders of magnitude. Then using

ηIDIW = −WDA, we find

F T =
qpZ̃p|Xp|2

δGS∂T ∂T̄ K0/2 − qr∂T Z̃r|Xr|2

(

F p

Xp

)

+ O
(

8π2m3/2DA

MP l

)

=
O(δGSξFI)

M2
GS + O(δGSξFI)

F p

Xp
, (3.24)

where we have used (3.23) for the last expression. Applying this relation to (3.7), we also

find

g2
ADA = −qpZ̃pδpq̄ + qpqqX

p∗Xq∂T [Z̃pZ̃q/(δGS∂T ∂T̄ K0/2 − qr∂T Z̃r|Xr|2)]
δ2
GS∂T ∂T̄ K0/4 + (q2

r Z̃r − qrδGS∂T Z̃r/2)|Xr |2
F pF q∗

+
Vliftη

I∂I lnP
δ2
GS∂T ∂T̄ K0/4 + (q2

r Z̃r − qrδGS∂T Z̃r/2)|Xr |2

=
O(ξFI)

M2
GS + O(ξFI)

∣

∣

∣

∣

F p

Xp

∣

∣

∣

∣

2

+
Vlift

M2
GS + O(ξFI)

ηI∂I lnP. (3.25)

Note that the piece proportional to Vlift vanishes if the Goldstino superfield on anti-brane

is sequestered from the U(1)A charged fields, i.e. ηI∂IP = 0, which is a rather plausible

possibility in view of our discussion in section 2.

The relations (3.24) and (3.25) show that the relative importance of the GS modulus

mediation and the U(1)A D-term mediation is determined essentially by the ratio

R ≡ ξFI

M2
GS

=
2∂T K0

δGS∂T ∂T̄ K0
. (3.26)

If T is a string dilaton or a Kähler modulus normalized as ∂T fa = O(1), its Kähler potential

is given by

K0 = −n0 ln(T + T ∗) + O(1/8π2(T + T ∗)).

As long as Re(T ) is stabilized at a value of O(1), the higher order string loop or α′ correc-

tions to K0 can be safely ignored, yielding |R| = O(8π2). In such case, (3.24) and (3.25)

imply that generically

|DA| ∼ |F T |2 ∼
∣

∣

∣

∣

F p

Xp

∣

∣

∣

∣

2

. (3.27)
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Note that in the limit |R| À 1, the U(1)A gauge boson mass-square is dominated by the

contribution from 〈Xp〉 ∼
√

|ξFI |. In this case, the longitudinal component of the massive

U(1)A gauge boson comes mostly from the phase degrees of Xp, while the GS modulus T

is approximately a flat direction of the U(1)A D-term potential. An interesting possibility

is then to stabilize T by non-perturbative superpotential at a SUSY AdS vacuum with

Re(T ) = O(1), and then lift this AdS vacuum to dS state by adding a red-shifted anti-

brane as in the KKLT moduli stabilization scenario. In the next section, we will discuss

such KKLT stabilization of the GS modulus in more detail together with the resulting

pattern of soft SUSY breaking terms.

Another possibility is that Re(T ) is a blowing-up modulus of orbifold singularity, thus

ξFI = δGS∂T K0 = 0 in the orbifold limit. Choosing Re(T ) = 0 in the orbifold limit, K0

can be expanded as

K0 ≈ 1

2
a0(T + T ∗)2 + O((T + T ∗)3)

for a constant a0. If Re(T ) is stabilized at near the orbifold limit for which |ξFI | ¿ M2
GS ,

the resulting |R| ¿ 1. In this limit, if the uplifting anti-brane is sequestered from the

U(1)A charged fields, i.e. ηI∂IP = 0, eqs. (3.24) and (3.25) lead to

F T ∼ δGSR
F p

Xp
, DA ∼ R

∣

∣

∣

∣

F p

Xp

∣

∣

∣

∣

2

, (3.28)

where F p/Xp represents the SUSY breaking mediated at the scale around 〈Xp〉 ∼
√

|ξFI |
¿ MGS . The anomaly condition (3.6) for the U(1)X symmetry (3.5) implies that the

gauge kinetic functions receive a loop correction ∆fa ∼ 1
8π2 ln Xp at the scale 〈Xp〉 where

U(1)X is spontaneously broken. For instance, there might be a coupling XpQ1Q2 in the

superpotential generating ∆fa through the loop of Q1 + Q2 which are charged under the

standard model gauge group.7 This results in the gaugino masses

Ma = O
(

1

8π2

F p

Xp

)

(3.29)

mediated at the scale 〈Xp〉. Obviously F T is smaller than this Ma in the limit |R| ¿ 1. If

ξFI is smaller than M2
P l by many orders of magnitude, e.g. |R| . 10−4, |DA| also is smaller

than |Ma|2 mediated at 〈Xp〉. Then the soft terms are dominated by the contributions

mediated at the low messenger scale around 〈Xp〉 ∼
√

|ξFI |. Those soft terms with low

messenger scale depend on more detailed property of the model, which is beyond the scope

of this paper.

4. A model for the KKLT stabilization of the GS modulus

In this section, we discuss a model for the KKLT stabilization of the GS modulus T in

detail. In this model, T is stabilized at a value of O(1), yielding ξFI ∼ δGSM2
P l. For

simplicity, we introduce a single U(1)A charged MSSM singlet X whose vacuum value

7This corresponds to the gauge mediation at the messenger scale 〈Xp〉.
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cancels ξFI in DA. In addition to X and the visible matter superfields Qi, one needs also

a hidden SU(Nc) Yang-Mills sector with SU(Nc) charged matter fields QH + Qc
H in order

to produce non-perturbative superpotential stabilizing T . The gauge kinetic functions of

the model are given by

fa = kT + ∆f, fH = kHT + ∆fH , (4.1)

where fa (a = 3, 2, 1) and fH are the gauge kinetic functions of the SU(3)c×SU(2)W ×U(1)Y
and the hidden SU(Nc) gauge group, respectively, and k and kH are real constants of O(1).

Generically ∆f and ∆fH can depend on other moduli of the model. Here we assume that

those other moduli are fixed by fluxes with a large mass À 8π2m3/2, and then ∆f and ∆fH

can be considered as constants which are obtained by integrating out the heavy moduli.

The Kähler potential, superpotential, and the uplifting operator are given by

K = K0(tV ) + ZX(tV )X∗e−2VAX + ZH(tV )Q∗
He2qVAQH

+ Zc
H(tV )Qc∗

He2qcVAQc
H + Zi(tV )Qi∗e2qiVAQi,

W = ω0 + λXq+qcQc
HQH + (Nc − Nf )

(

e−8π2fH

det(Qc
HQH)

)
1

Nc−Nf

+
1

6
λijkX

qi+qj+qkQiQjQk,

P = P(tV ), (4.2)

where tV = T + T ∗ − δGSVA, w0 is a constant of O(m3/2M
2
P l), λ and λijk are constant

Yukawa couplings, Nf denotes the number of flavors for the hidden matter QH + Qc
H ,

PΛ2Λ̄2 is the uplifting Goldstino superfield operator induced by anti-brane, and finally the

U(1)A charge of X is normalized as qX = −1. As we have discussed in section 2, anti-brane

in KKLT compactification is expected to be sequestered from the D-brane of U(1)A, and

then P is independent of tV . Here we consider more general case that P can depend on

tV in order to see what would be the consequence of the uplifting operator if it is not

sequestered from U(1)A. Note that the GS cancellation of the mixed anomalies of U(1)A
requires

δGS

2
=

Nf (q + qc)

8π2kH
=

∑

i qiTr(T 2
a (Qi))

4π2ka
. (4.3)

In our case, the non-perturbative superpotential in (4.2), i.e. the Affleck-Dine-Seiberg

superpotential [36]

WADS = (Nc − Nf )

(

e−8π2fH

det(Qc
HQH)

) 1

Nc−Nf

(4.4)

requires a more careful interpretation. If λ is so small that the tree level mass MQ =

λ〈Xq+qc〉 of QH + Qc
H is lower than the dynamical scale of SU(Nc) gauge interaction,

WADS can be interpreted as the non-perturbative superpotential of the light composite
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meson superfields Σ = Qc
HQH . However a more plausible possibility is that λ = O(1), and

so (in the unit with MP l = 1)

MQ = λ〈Xq+qc〉 À ΛH =
(

e−8π2fH det(MQ)
)1/(3Nc)

. (4.5)

Note that |X|2 = O(|ξFI |) = O(M2
P l/8π

2) in this model. In this case, the correct procedure

to deal with SU(Nc) dynamics is to integrate out first the heavy QH + Qc
H at the scale

MQ. The resulting effective theory is a pure super YM theory at the scale just below MQ,

but with the modified gauge kinetic function:

feff(MQ) = fH +
3Nc − Nf

8π2
ln(MQ/MP l). (4.6)

Then the SU(Nc) gaugino condensation is formed at ΛH by this pure super YM dynamics,

yielding a non-perturbative superpotential

Weff = NcM
3
Qe−8π2feff (MΦ)/Nc . (4.7)

This Weff is the same as the non-perturbative superpotential obtained by integrating out

Σ = Qc
HQH using the equations of motion ∂ΣW = 0 for the superpotential of (4.2). In

the following, we will simply use the superpotential of (4.2) since it leads to the correct

vacuum configuration independently of the value of MQ/ΛH .

To examine the vacuum configuration of the model (4.2), it is convenient to estimate

first the mass scales of the model. As long as m3/2 is hierarchically smaller than MP l,

one easily finds that the following mass patterns are independent of the details of SUSY

breaking. First, T is stabilized at a vacuum expectation value of O(1), and as a result

R =
ξFI

M2
GS

=
2∂T K0

δGS∂T ∂T̄ K0
= O(8π2). (4.8)

The U(1)A gauge boson mass-square is dominated by the contribution from |X|2 ∼ |ξFI |:

M2
A

2g2
A

' ZX |X|2 + M2
GS ' ZX |X|2. (4.9)

The hidden SU(NC) confines at the scale

ΛH =
(

e−8π2(kHT+∆fH)det(MQ/MP l)
)1/(3Nc)

MP l, (4.10)

and the SU(Nc) D-flat directions of the hidden matter fields are stabilized at

〈Qc
HQH〉 ∼ Λ3

H

MQ
. (4.11)

Finally the hidden SU(Nc) scale and m3/2 obey the standard relation:

Λ3
H

M3
P l

∼
m3/2

MP l
. (4.12)
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It is straightforward to see that in the absence of the uplifting Goldstino operator

PΛ2Λ̄2, the model (4.2) has a unique and stable SUSY AdS vacuum.8 For m3/2 hier-

archically smaller than MA and ΛH , adding the uplifting operator with P ∼ m2
3/2M

2
P l

triggers a small shift of vacuum configuration, leading to non-zero vacuum expectation

values of F T , FX , FΣ and DA, where Σ = Qc
HQH . In the following, we compute these

SUSY breaking vacuum values within a perturbative expansion in

δGS

T + T ∗
= O

(

1

8π2

)

,

while ignoring the corrections suppressed by the following scale hierarchy factors:

ΛH

MA
,

m3/2

ΛH
,

m3/2

MΦ
,
〈Qc

HQH〉
〈XX∗〉 ¿ 1

8π2
. (4.13)

Let us now examine the vacuum configuration in more detail. As we have mentioned,

the true vacuum configuration is given by a small shift induced by Vlift from the SUSY

AdS solution of DA = 0 and DIW = 0. With this observation, we find (in the unit with

MP l = 1):

|X|2 = −δGS∂T K0

2ZX

(

1 + O
(

1

8π2

))

,

Qc
HQH = e−8π2(kHT+∆fH)/Nc(λXq+qc)(Nf−Nc)/Nc ,

Re(T ) =
Nc

8π2kH
ln

∣

∣

∣

∣

8π2kH

ω0∂T K0

∣

∣

∣

∣

− ∆fH + ∆f∗
H

2kH
+

Nf

8π2kH
ln |λXq+qc | + O

(

1

8π2

)

=
Nc

8π2kH
ln

(

MP l

m3/2

)

− ∆fH + ∆f∗
H

2kH
+ O

(

1

8π2

)

. (4.14)

Note that |X|2 = O(M2
P l/8π

2), thus an effect further suppressed by |X|2/M2
P l is comparable

to the loop correction. The above result on the vacuum expectation value of Re(T ) shows

that the GS modulus is stabilized at a value of O(1) for the model parameters giving the

weak scale SUSY, e.g. m3/2 . O(8π2) TeV.

If Re(T ) is stabilized at a value of O(1) as desired, Σ = Qc
HQH is hierarchically smaller

than M2
P l. Since FΣ = O(ΣF T ) and the couplings between QH +Qc

H and the visible fields

are suppressed by 1/MP l, the contribution from FΣ to the visible soft terms can be ignored.

Then the soft terms of visible fields are determined by the following four SUSY-breaking

auxiliary components:

F T

T + T ∗
=

m∗
3/2

8π2

(

3Nc∂T ln(Vlift)

kH(T + T ∗)∂T K0

)(

1 + O
(

1

8π2

))

,

FX

X
= −F T ∂T ln

(

− ZX

∂T K0

)(

1 + O
(

1

8π2

))

,

g2
ADA =

∣

∣F T
∣

∣

2
∂T ∂T̄ ln

(

− ZX

∂T K0

)(

1 + O
(

1

8π2

))

8This SUSY AdS vacuum is a saddle point solution of VF , but is the global minimum of VF + VD.
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+ Vlift
∂T lnP
∂T K0

(

1 + O
(

1

8π2

))

,

1

8π2

FC

C0
=

m∗
3/2

8π2

(

1 + O
(

1

8π2

))

, (4.15)

where FC/8π2 and F T are the order parameters of anomaly mediation and GS modulus

mediation, respectively, and FX and DA are the order parameters of U(1)A mediation.

Note that VA and X constitute a massive vector superfield ṼA = VA − ln |X|. The results

on FX and DA can be obtained from eqs. (3.24) and (3.25), while the result on F T can be

obtained by applying eqs. (2.28) and (2.31).

The above results show that generically the GS modulus mediation, the anomaly me-

diation and the X mediation are comparable to each other. If anti-brane and the D-

brane of U(1)A are separated from each other by a warped throat, it is expected that

∂T lnP = 0. Then the U(1)A D-term mediation is also generically comparable to the

other mediations. However, if the Kähler potential of T and X has a special form to give

ZX/∂T K0 = constant, we have FX/X = O(F T /8π2) and DA = O(|F T |2/8π2), thus the

U(1)A mediation is suppressed by a loop factor of O(1/8π2) compared to the GS-modulus

and anomaly mediations. Finally, if anti-brane is not sequestered, the resulting DA is of

O(m2
3/2) = O((8π2F T )2) and then soft sfermion masses are dominated by the U(1)A D-

term contribution. Another important feature of (4.15) is that F T , FX/X and FC/C0

are relatively real since K0, ZX ,P are real functions of the real variable t = T + T ∗. As

a result, the gaugino masses and A-parameters mediated by these auxiliary components

automatically preserve CP [37]. Since one can always make m3/2 = eK/2W to be real by

an appropriate R-transformation, all of the above auxiliary components can be chosen to

be real, which will be taken in the following discussions.

Applying the above results to the soft terms of (2.35) and also taking into account

that |X|2/M2
P l = O(1/8π2), we find the soft masses at the scale just below MGUT :

Ma = M0 +
ba

8π2
g2
GUT m3/2 + O

(

M0

8π2

)

,

Aijk = M0(ai + aj + ak) −
1

16π2
(γi + γj + γk)m3/2 + O

(

M0

8π2

)

,

m2
i = ciM

2
0 − 1

32π2
γ̇im

2
3/2 +

m3/2M0

8π2





1

2

∑

jk

|yijk|2(ai + aj + ak) − 2C2(Q
i)





− 3qim
2
3/2

∂T lnP
∂T K0

(

1 + O
(

1

8π2

))

+ O
(

M2
0

8π2

)

, (4.16)

where M0 is the universal modulus-mediated gaugino mass at MGUT :

M0 ≡ F T ∂T ln Re(fa) =
m3/2

8π2

(

3Nc∂T ln Vlift

kH∂T K0

)

∂T ln(Re(fa)), (4.17)

for

∂T ln(Re(fa)) =
1

T + T ∗ + (∆f + ∆f∗)/k
=

kg2
GUT

2
, (4.18)
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and

ai =
∂T ln

(

e−K0/3Zi (−ZX/∂T K0)
qi

)

∂T ln(Re(fa))
,

ci = −∂T ∂T̄ ln
(

e−K0/3Zi (−ZX/∂T K0)
qi

)

[∂T ln(Re(fa))]2
. (4.19)

Here γ̇i = dγi/d ln µ for the anomalous dimension γi = 8π2d ln Zi/d ln µ, 2C2(Q
i) is

the gauge contribution to γi, i.e. C2(Q
i)1 =

∑

a g2
aT

2
a (Qi) for the gauge generator Ta(Q

i),

and finally the canonical Yukawa couplings are given by

yijk =
λijk(δGS/2)(qi+qj+qk)/2

√

(−ZX/∂T K0)qi+qj+qke−K0ZiZjZk

. (4.20)

The soft parameters of (4.16) show that the gaugino masses Ma in models of KKLT

stabilization of the GS modulus are determined by the GS modulus mediation and the

anomaly mediation which are comparable to each other. In case that anti-brane is se-

questered from U(1)A and thus from the GS modulus T , i.e. ∂T lnP = 0, soft sfermion

masses are comparable to the gaugino masses. However if anti-brane is not sequestered,

soft sfermion mass-squares (for qi 6= 0) are dominated by the U(1)A D-term contribution of

O(8π2M2
a ), which might enable us to realize the more minimal supersymmetric standard

model scenario [15].

It has been noticed that the low energy gaugino masses obtained from the renormal-

ization group (RG) running of the gaugino masses of (4.16) at MGUT are given by

Ma(µ) = M0

[

1 − 1

4π2
bag

2
a(µ) ln

(

MGUT

(MP l/m3/2)α/2µ

)]

, (4.21)

which are same as the low energy gaugino masses in pure modulus-mediation started from

the mirage messenger scale

Mmirage = (m3/2/MP l)
α/2MGUT , (4.22)

where

α ≡
m3/2

M0 ln(MP l/m3/2)
. (4.23)

Similar mirage mediation pattern arises also for the low energy soft sfermion masses if the

involved Yukawa couplings are small or ai + aj + ak = 1 and ci + cj + ck = 1 for the

combination (i, j, k) = (Hu, tL, tR) in the top-quark Yukawa coupling. From (4.17), we find

that the anomaly to modulus mediation ratio α is given by

α =
2∂T K0

2∂T K0 + 3∂T lnP

(

1 +
4π2[kH(∆f + ∆f∗) − k(∆fH + ∆f∗

H)]

kNc ln(MP l/m3/2)

)

. (4.24)

In the minimal KKLT model, anti-brane is sequestered, i.e ∂T lnP = 0, ∆f ' 0 and

∆fH ' 0, thus α = 1. However in more generic compactifications, it is possible that
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the gauge kinetic functions fa and fH are given by different linear combinations of T and

other moduli. Stabilizing the other moduli can give rise to sizable ∆fH and/or ∆f , thus

a different value of α even in the case that anti-brane is sequestered [38]. In this regard,

one interesting possibility is to have α = 2 which leads to the TeV scale mirage mediation.

As was noticed in [26], the little hierarchy problem of the MSSM can be significantly

ameliorated in the TeV scale mirage mediation scenario. For the model under discussion,

α = 2 can be achieved for instance when ∂T lnP = 0, Re(∆f) = 0 and Re(∆fH) = −Nc/2.

To be more concrete, let us consider the following Kähler potential and the uplifting

operator which are expected to be valid for a wide class of string compactifications:

fa = kT, fH = kHT + ∆fH ,

K0 = −n0 ln(tV ), ZI =
1

tnI
V

, P =
P0

tnP
V

, (4.25)

where ZI denote the Kähler metric of ΦI = (X,Qi), and P0 is a constant of O(m2
3/2M

2
P l).

Applying (4.14), (4.15), (4.16) and (4.24) to this form of gauge kinetic functions, Kähler

potential and uplifting operator, we find

|X|2 =
n0δGS

2(T + T ∗)1−nX
,

FX

X
= (nX − 1)M0,

g2
ADA = (nX − 1)M2

0 +
3nP

n0
m2

3/2,

ai = ci =
1

3
n0 − ni − (nX − 1)qi,

α =
2n0

2n0 + 3nP

(

1 − 4π2(∆fH + ∆f∗
H)

Nc ln(MP l/m3/2)

)

,

yijk =
(n0δGS/2)(qi+qj+qk)/2

(T + T ∗)(ai+aj+ak)/2
λijk. (4.26)

In fact, since U(1)A is spontaneously broken by 〈X〉 ∼ MP l/
√

8π2, the soft parame-

ters of (4.16) can be obtained also from an effective SUGRA which would be derived by

integrating out the massive vector multiplet ṼA = VA − ln |X| as well as the hidden matter

QH + Qc
H . To derive the effective SUGRA, it is convenient to make the following field

redefinition:

VA → VA + ln |X|,

T → T +
δGS

2
ln(X),

QI → X−qI QI (QI = QH , Qc
H , Qi). (4.27)

This field redefinition induces an anomalous variation of the gauge kinetic functions

fa → fa −
1

4π2

∑

i

qiTr(T 2
a (Qi)) ln(X),

fH → fH − 1

8π2
(q + qc)Nf ln(X). (4.28)
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Taking into account this change of gauge kinetic functions together with the anomaly

cancellation condition (4.3), the model in the new field basis is given by

K = K0(tV ) + ZX(tV )e−2VA + ZI(tV )QI∗e2qIVAQI

W = ω0 + λQc
HQH +

1

6
λijkQ

iQjQk,

fa = kT + ∆f, fH = kHT + ∆fH , P = P(tV ), (4.29)

In the new field basis, VA corresponds to the massive vector superfield ṼA. The heavy

hidden matter QH +Qc
H can be easily integrated out, leaving a threshold correction to the

hidden gauge kinetic function: δfH = −Nf ln(λ)/8π2. The massive vector superfield can

be also integrated out using the equation of motion:

∂K

∂VA
− θ2θ̄2CC∗eK/3 ∂P

∂VA
= 0. (4.30)

For simplicity, here we will consider only the case of sequestered anti-brane, i.e. ∂P/∂VA =

0. The generalization to unsequestered anti-brane is straightforward. Making an expansion

in δGS = O(1/8π2), the solution of the above equation is given by

e−2VA = −δGS∂T K0

2ZX

(

1 + O
(

1

8π2

))

+ qi

( −2ZX

δGS∂T K0

)qi
(

1 + O
(

1

8π2

))

ZiQ
i∗Qi. (4.31)

Inserting this solution to (4.29) and also adding the gaugino condensation superpotential

of the super SU(Nc) YM theory whose gauge kinetic function is now given by fH = kHT +

∆fH + δfH , we find the following effective SUGRA:

Keff = K0(t) +

∣

∣

∣

∣

ZX(t)

∂T K0(t)

∣

∣

∣

∣

qi

Zi(t)Q
i∗Qi,

Weff = w0 + Ncλ
Nf/Nce−8π2∆fH/Nce−8π2kHT/Nc +

1

6
|δGS/2|(qi+qj+qk)/2λijkQ

iQjQk,

f eff
a = kT + ∆f, Peff = P = constant, (4.32)

where t = T + T ∗ and we made the final field redefinition Qi → |δGS/2|qi/2Qi. One can

now compute the vacuum values of T , F T and the resulting soft terms of visible fields using

the above effective SUGRA, and finds the same results as those in (4.14), (4.15) and (4.16)

for ∂T lnP = 0.

5. Conclusion

In this paper, we examined the effects of anomalous U(1)A gauge symmetry on SUSY break-

ing while incorporating the stabilization of the modulus-axion multiplet responsible for the

GS anomaly cancellation mechanism. Since our major concern is the KKLT stabilization

of the GS modulus, we also discussed some features such as the D-type spurion dominance

and the sequestering of the SUSY breaking by red-shifted anti-brane which is a key element
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of the KKLT moduli stabilization. It is noted also that the U(1)A D-term potential can

not be an uplifting potential for dS vacuum in SUSY breaking scenarios with a gravitino

mass hierarchically smaller than the Planck scale. In case of the KKLT stabilization of

the GS modulus, soft terms of visible fields are determined by the GS modulus mediation,

the anomaly mediation and the U(1)A mediation which are generically comparable to each

other, thereby yielding the mirage mediation pattern of the superparticle masses at low

energy scale.
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A. SUSY breaking by red-shifted anti-brane

In this appendix, we discuss the red-shift of the couplings of 4D graviton and gravitino

on the world volume of anti-brane within the framework of the supersymmetric Randall-

Sundrum model on S1/Z2 [39]. The bulk action of the model is given by

S5D = −1

2

∫

d4xdy
√
−G M3

5

{

R5 + Ψ̄i
MγMNP DNΨi P

− 3

2
kε(y)Ψ̄i

MγMN (σ3)ijΨ
j
N − 12k2 +

( δ(y) − δ(y − π) )√
G55

12k

}

, (A.1)

where R5 is the 5D Ricci scalar for the metric GMN , Ψi
M (i = 1, 2) are the symplectic

Majorana gravitinos, M5 is the 5-dimensional Planck scale, and k is the AdS curvature.

Here we have ignored the graviphoton as it is not relevant for our discussion. The relations

between the gravitino kink mass and the brane cosmological constants are determined by

supersymmetry. Imposing the standard orbifold boundary conditions on the 5-bein and

5D gravitino, one finds that a slice of AdS5 is a solution of the equations of motion:

ds2 = e−2kL|y|ηµνdxµdxν + L2dy2 (−π ≤ y ≤ π), (A.2)

where L is the orbifold radius. The corresponding gravitino zero mode equation is given

by

∂yΨ
i
(0)µ +

L

2
kε(y)(σ3)

i
jγ5Ψ

j
(0)µ = 0,

yielding the following 4D graviton and gravitino zero modes:

G(0)µν (x, y) = e−2kL|y|gµν(x),

Ψi=1
(0)µ

(x, y) = e−
1

2
kL|y|ψµL(x). (A.3)
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The above form of wavefunctions reflects the quasi-localization of the 4D graviton and

gravitino zero modes at the UV fixed point y = 0, leading to a red-shift of the zero mode

couplings at the IR fixed point y = π. To make an analogy with the KKLT set-up, let us

introduce a brane of 4D AdS SUGRA at y = 0 and an anti-brane of non-linearly realized

4D SUGRA at y = π. Written in terms of the 4D zero modes gµν(x) and ψµ, the UV brane

action is given by

SUV =

∫

d4x
√−g

[

3m2
UVM2

0 − 1

2
M2

0 R(g)

−1

2

(

εµνρσψ̄µγ5γνDρψσ + mUVψ̄µLσµνψνR + h.c.
)

]

. (A.4)

As for the anti-brane action with non-linearly realized 4D SUGRA at y = π, let us choose

the unitary gauge of ξα = 0, where ξα is the Goldstino fermion living on the world-volume

of anti-brane. Then using

G(0)µν (x, π) = e−2πkLgµν(x),

Ψi=1
(0)µ

(x, π) = e−πkL/2ψµL(x), (A.5)

one easily finds that a generic anti-brane action of gµν and ψµ can be written as [40]

SIR =

∫

d4x
√−g

[

−e4AΛ4
1 −

1

2
e2AΛ2

2R(g) + e2AZ1ε
µνρσψ̄µγ5γνDρψσ

+ e3A
(

Λ3ψ̄µLσµνψνR + Λ4ψ̄µLψµ
R + h.c.

)

+ e2Aψ̄µγ5γνDρψσ

(

Z2g
µνgρσ + Z3g

µρgνσ + Z4g
µσgνρ

)]

, (A.6)

where eA ≡ e−πkL and all the coefficients, i.e. Λi and Zi (i = 1, . . . , 4), are of order unity

in the unit with M5 = 1.

In fact, adding the brane actions (A.4) and (A.6) to the bulk action (A.1) makes the

solution (A.3) unstable. This problem can be avoided by introducing a proper mechanism

to stabilze the orbifold radius L. In the KKLT compactifications of Type IIB string the-

ory, such stabilization is achieved by the effects of fluxes. Generalization of (A.1), (A.4)

and (A.6) incorporating the stabilization of the radion L will modify the wavefunctions of

the graviton and gravitino zero modes, however still (A.3) provides a qualitatively good ap-

proximation for the modified wavefunctions as long as the quasi-localization of zero modes

is maintained. To compensate the negative vacuum energy density of the UV brane, the

anti-brane should provide a positive vacuum energy density: e4AΛ4
1 ' 3m2

UVM2
0 , which

requires e2A ∼ mUV/M0 for M0 ∼ Λ1. For this value of the warp factor, the 4D Planck

scale and gravitino mass are given by

M2
P l '

M3
5

k
+ M2

0 , m3/2 ' mUV, (A.7)

where we have assumed M5 ∼ k ∼ M0 and ignored the contributions suppressed by an

additional power of eA. Then one finds that SUSY breaking effects due to the terms of SIR
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other than e4AΛ4
1 are suppressed by more powers of eA ∼

√

m3/2/MP l compared to the

effects due to the terms in S5D and SUV even when Λi and Zi are all of order unity in the

unit with MP l = 1. For instance, the gravitino mass from SIR is of O(e3AMP l), while the

gravitino mass from SUV is m3/2 = O(e2AMP l).
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